A Classification of Ordinals up to Borel Isomorphism

نویسنده

  • SU GAO
چکیده

We consider the Borel structures on ordinals generated by their order topologies and provide a complete classification of all ordinals up to Borel isomorphism in ZFC. We also consider the same classification problem in the context of AD and give a partial answer for ordinals ≤ ω2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification of Ordinals up to Borel Isomorphism

We consider the Borel structures on ordinals generated by their order topologies and provide a complete classification of all ordinals up to Borel isomorphism in ZFC. We also consider the same classification problem in the context of AD and give a partial answer for ordinals ≤ ω2.

متن کامل

The Classification of Torsion-free Abelian Groups of Finite Rank up to Isomorphism and up to Quasi-isomorphism

We prove that the isomorphism and quasi-isomorphism relations on the p-local torsion-free abelian groups of fixed finite rank n are incomparable with respect to Borel reducibility.

متن کامل

Comparing classes of finite structures

In many branches of mathematics, there is work classifying a collection of objects, up to isomorphism or other important equivalence, in terms of nice invariants. In descriptive set theory, there is a body of work using a notion of “Borel embedding” to compare the classification problems for various classes of structures (fields, graphs, groups, etc.) [7], [3], [11], [12], [13]. In this work, e...

متن کامل

The Completeness of the Isomorphism Relation for Countable Boolean Algebras

We show that the isomorphism relation for countable Boolean algebras is Borel complete, i.e., the isomorphism relation for arbitrary countable structures is Borel reducible to that for countable Boolean algebras. This implies that Ketonen’s classification of countable Boolean algebras is optimal in the sense that the kind of objects used for the complete invariants cannot be improved in an esse...

متن کامل

The classification problem for von Neumann factors

We prove that it is not possible to classify separable von Neumann factors of types II1, II∞ or IIIλ, 0 ≤ λ ≤ 1, up to isomorphism by a Borel measurable assignment of “countable structures” as invariants. In particular the isomorphism relation of type II1 factors is not smooth. We also prove that the isomorphism relation for von Neumann II1 factors is analytic, but is not Borel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007